
A cryptographic technique that allows two parties to compute the
intersection of their sets without revealing anything except the
intersection

Matej Kovačič

Matjaž Rihtar

Private Set
Intersection

In a private set intersection (PSI) protocol two parties
jointly compute the intersection of their private input
sets.

A client and a server jointly compute the intersection of
their private input sets in a manner that at the end the
client learns the intersection and the server learns
nothing (one-way PSI) or both learn the intersection
(mutual PSI).

Private Set Intersection

Such protocols are especially useful whenever one or
both parties (who do not fully trust each other) must
compute an intersection of their respective data sets
(i.e. only the required minimum amount of information
should be disclosed).

Private Set Intersection

Intersections of the Greek, English and Russian alphabet, considering only the
shapes of the letters and ignoring their pronunciation.

1. A government agency needs to make sure that
employees of its industrial contractor have no criminal
records. Government does not want to disclose list of
all convicted felons, and contractor does not want to
disclose their full list of employees. However, both
would like to know the intersection, if any.

2. Federal tax authority wants to learn whether any
suspected tax evaders have accounts with a certain
foreign bank and, if so, obtain their account records.
The bank is forbidden of wholesale disclosure of their
account holders and the tax authority can not reveal its
list of suspects to a foreign bank.

Examples of use

Source: Emiliano De Cristofaro, Gene Tsudik. 2009. Practical Private Set Intersection Protocols with
Linear Computational and Bandwidth Complexity. Cryptology ePrint Archive, Report 2009/491.
<https://eprint.iacr.org/2009/491>.

3. Two real estate companies would like to identify
homeowners who are double-dealing. That means they
have signed exclusive contracts with both companies to
assist them in selling their properties. None of them
would like to reveal the other party list of their
customers.

4. Two national law enforcement bodies want to
compare their respective databases of terrorist
suspects. National privacy laws prevent them from
revealing bulk data, however, by treaty, they are
allowed to share information on suspects of common
interest.

Examples of use

Source: Emiliano De Cristofaro, Gene Tsudik. 2009. Practical Private Set Intersection Protocols with
Linear Computational and Bandwidth Complexity. Cryptology ePrint Archive, Report 2009/491.
<https://eprint.iacr.org/2009/491>.

Hashes are supposed to be one-way functions, but this
is not always true...

Why not hashes?

Hash list:
57204d13a7d353ab0cd3a0d212bbc425
5cf06d5bf80c49e5156515d932536a36
2b6895ae6a902d00da9e04a4d4269a68
d74e8d6aacdc1747ef626982bd5f11bb
06c9b2b57717d80f08e1773394b6f502
b2ed3039dd45146d2a1f9f420f8816c5
b4d06450af671e0edc403b257315107a
cade9c741dd959d966420a6659238272
2f3498ebf828e6b996a1d29a7b2d877b
bd3ca378488e00055d5b23df1252e443
5bdbd627461fc598bb6a00d0168587fe
90e3415b9b87576ca111bf52e1d07265

First we generate
a database of all
possible phone

numbers...

Then we compute table of hashes
for all that phone numbers...

Our target hash:
b2ed3039dd45146d2a1f9f420f8816c5

Finally we look
for our target

hash in our hash
table and so

reveal the original
phone number.

Why not hashes?

On the Internet we can find lists of precomputed hashes...

How does PSI work?

Source: Emiliano De Cristofaro, Gene Tsudik.
2009. Practical Private Set Intersection
Protocols with Linear Computational and
Bandwidth Complexity. Cryptology ePrint
Archive, Report 2009/491.
<https://eprint.iacr.org/2009/491>.

PSI exchange, which is a
functionality in secure multi-party

computation (also known as
privacy-preserving computation)

is much more secure than
exchange with hashes, because

it uses encryption.

Server takes its data, computes hash (SHA-256), convert this
to integer, makes RSA decode (mathematical operation which
is a part of RSA decode procedure), and computes new hash
(SHA-256).

data hash(s_data) s_number1 (s_number1)→ hash(s_data) → s_number1 → (s_number1) → hash(s_data) → s_number1 → (s_number1) → hash(s_data) → s_number1 → (s_number1) ^d mod n → hash(s_data) → s_number1 → (s_number1)
s_number2 hash(s_number2) s_number3→ hash(s_data) → s_number1 → (s_number1) → hash(s_data) → s_number1 → (s_number1)

Client computes hashes (SHA-256) for all data.

c_data hash(c_data) c_number→ hash(s_data) → s_number1 → (s_number1) → hash(s_data) → s_number1 → (s_number1)

Then client for each data element generates random number
(c_rand).

Now client has: c_data :: c_number :: c_rand

How does PSI work?

Then client multiplies each data element (c_data) with RSA
encoded random number. Random number c_rand is RSA
encoded with server’s public key. {RSA(c_rand) * c_data mod
n}. This result is then sent to server.→ hash(s_data) → s_number1 → (s_number1)

For each received data server then computes RSA decode.
Decoded client data and server’s final hash of its data
(s_number3) are sent to client. ←

Finally client takes (his) RSA decoded client data from server
and divides them with c_rand number and computes a hash.
This hash is then compared with server’s data (s_number3).

If both hashes are the same, the data are the same, so there
is intersection between the data on server and a client.

How does PSI work?

Another problem is that different languages has different writing
system.

Transliteration is utilized when a word or phrase must be
“transmitted” to a language with a different writing system.

For the we took ICAO (The International Civil Aviation
Organization) transliteration tables, however we improved them
a little, so our system now uses “extended ICAO” transliteration
standard.

Example (lines containing # are ICAO original standard, lines
containing ## are our “extended ICAO”):

● 0x00DD: 'Y', # Y with acute
● 0x00DE: 'TH', ## Thorn (Iceland)
● 0x00DF: 'ss', # sharp s (Germany)
● 0x0136: 'K', # K with cedilla
● 0x0137: 'k', ## k with cedilla
● 0x0138: 'k', ## kra
● 0x0139: 'L', # L with acute

Transliteration

Our “extended ICAO” supports all small and some additional
upper case and additional cyrillic characters.

Our procedure is that we first perform transliteration and then
convert characters to uppercase.

Example of a problem with ICAO standard (one character could
be transliterated to differend latin characters – depending of an
original language):

● 0x0413: 'G', # GHE (or G, except Belorussian and Serbian H)

Suggestions:
● If you are using small caps, you can leave them – our system

will automatically transcode them to uppercase.
● If you have cyrillic characters in original, leave them in cyrillic.

Transliteration

Example of transliteration:

Matej Kovačič MATEJ KOVACIC→ hash(s_data) → s_number1 → (s_number1)

Matjaž Rihtar MATJAZ RIHTAR→ hash(s_data) → s_number1 → (s_number1)

Transliteration

Asumption is that one person can have from 2 to 5 names (first
name + up to 4 additional names or surnames).

This means from 2 to 394 possible permutations.

Example: “Kyle Reese Sergeant, born 1. 1. 2003”.

All possible permutations:
SERGEANT REESE KYLE 2003-01-01
REESE SERGEANT KYLE 2003-01-01
SERGEANT REESE 2003-01-01
REESE SERGEANT 2003-01-01
REESE KYLE SERGEANT 2003-01-01
SERGEANT KYLE 2003-01-01
KYLE SERGEANT 2003-01-01
SERGEANT KYLE REESE 2003-01-01
KYLE REESE 2003-01-01
KYLE REESE SERGEANT 2003-01-01
REESE KYLE 2003-01-01
KYLE SERGEANT REESE 2003-01-01

Permutations

We can find even cases when one or more names are similar
and not exactly the same. For example:

● country A has a person “SERGEANT REESE KYLE 2003-01-01”

● country B has a person “SERGEANT REESE KYLLE 2003-01-01”

PSI exchange will find a match, because one of the
permutations in both countries is “SERGEANT REESE 2003-01-
01” (name KYLE or KYLLE is neglected in this permutation).

However, please note, that birthday of both persons should
always be the same. Otherwise, there is no match.

Permutations

PSI application is written in programming language Python.

Installation script provides all installation packages (Python
2.7, required Python modules and the application itself).

Application runs on operating system Windows 10
(minimum Windows 7), but it could be ported to other
platforms as well.

Other needed software:
● for importing the data from Excell files, Microsoft Office
2010 or more recent version is required;

● web browser (suggested is the latest version of Chrome or
Firefox).

Technical requirements

Data could be imported via CSV or Excell (XLSX) file with
predefined set of fields.

Technical requirements

Hardware setup

Client 2 (country B)

Client 3 (country C)

Dispatch server
(Central PSI Monitor)

router
(closed local network)

Dispatch server
monitors state
of clients and

starts PSI procedure

PSI exchange is
taking place in

closed local network.
It could also be

implemented in VPN
network.

Client 1 (country A)

Clients contain data.
PSI exchange is done

directly between clients

Data flow

Client 1 (country A):
● user selects country;
● user uploads data

(XLSX/CSV);
● client transliterates

data;
● when user confirms

(s)he is ready, client
prepares itself for PSI
excange and reports
to dispatch server;

● client is now waiting
for dispatch server to
start PSI process;

● when PSI process is
done, client reports it
to dispatch server.

Client 2 (country B)
Client 3 (country C)

Dispatch server
(Central PSI
Monitor):

● records status of
clients (which client
is assigned to which
country, is
transliteration on
client done, is client
ready for PSI
exchange);

● can start PSI process
between clients and
can monitor PSI
exchange progress;

● does not see client
data!

1. Client reports
it is ready for PSI

process

2. Central PSI Monitor
instructs client to
start PSI process

3. Client performs
PSI exchange
with all other

clients

PSI exchange is taking place
only among clients. Central
PSI Monitor (dispatch server)

is not involved in PSI
exchange.

Data exchanging
through PSI procedure

is encrypted.

PSI application

Central PSI Monitor
at dispatch server is
monitoring country’s

status and PSI
progress.

PSI exchange is taking
place directly between two
countries (peer-to-peer).

Each country
can monitor

its own status.

Application consists of a three parts. First part is Central PSI
Monitor, which monitors statuses of clients and starts PSI
procedure.

Client application is divided into two parts. One is used to
exchange the data about the persons and the other to
exchange so called electronic identificator data (phone
numbers, licence plates, e-mail addreses social network
ID’s,...).

Step 1: Select your country.

PSI application

Step 2: Select your file with data. You can upload Excel or
CSV file.

PSI application

Step 3: File is uploaded to the application. Transliteration is
done and permutations are computed.

PSI application

Step 4: You can rewiev the data.

PSI application

Step 5: Click to “Main page” and then “Start PSI monitor”.

PSI application

Step 6: Now application generates RSA keys. After that, you can click
to “Connect”. Your client will be connected to Central PSI Monitor.
Then you can click “Ready” button. This will inform the Central PSI
Monitor that your country is ready for PSI exchange (this will be
indicated by message: {"STATUS": "OK, country ready"}).

PSI application

Step 7: When all clients are ready, operator of the Central
PSI Monitor can start PSI exchange among countries.
Central PSI Monitor will then indicate which countries are
doing PSI exchange and when the procedure is finished.

PSI application

Step 8: Now you can return to main screen and check PSI
results.

PSI application

Step 9: You can see with which clients (countries) you have
common results.

PSI application

Step 10: You can review the results (common records in
both databases) and save the results in CSV file.

PSI application

matej.kovacic@telefoncek.si
matjaz@eunet.si

Discussion

mailto:matej.kovacic@telefoncek.si
mailto:matjaz@eunet.si

	Prosojnica 1
	Prosojnica 2
	Prosojnica 3
	Prosojnica 4
	Prosojnica 5
	Prosojnica 6
	Prosojnica 7
	Prosojnica 8
	Prosojnica 9
	Prosojnica 10
	Prosojnica 11
	Prosojnica 12
	Prosojnica 13
	Prosojnica 14
	Prosojnica 15
	Prosojnica 16
	Prosojnica 17
	Prosojnica 18
	Prosojnica 19
	Prosojnica 20
	Prosojnica 21
	Prosojnica 22
	Prosojnica 23
	Prosojnica 24
	Prosojnica 25
	Prosojnica 26
	Prosojnica 27
	Prosojnica 28
	Prosojnica 29
	Prosojnica 30
	Prosojnica 31

